resnet 2

이미지 처리 모델

CNN 기반 이미지 분류 주요 CNN 아키텍처ResNet(Residual Network)VGGInception (GoogLeNet) ResNet (Residual Network) 깊은 신경망에서 발생하는 기울기 소실 문제(Gradient Vanishing를 해결하기 위해 잔차 연결(Residual Connection) 도입) y = F(x) + x → 입력을 직접 다음 층에 더해주는 구조 대표 모델: ResNet-18, ResNet-50, ResNet-101, ResNet-152   VGG 필터 크기를 3x3으로 고정해 단순하고 일관된 구조를 갖춤깊이가 깊어질수록 파라미터 수는 많지만 구조적 이해가 쉬움 대표 모델: VCG16, VCG19 Inception (GoogLeNet) 다양한 크기의 필터(1x1..

⊢ DeepLearning 2025.03.21

ResNet(Residual Network)

ResNet(Residual Network) 깊은 신경망을 효과적으로 학습하기 위해 개발된 모델 잔차 학습(Residual Learning) 개념을 도입하여 기울기 소실(Vanishing Gradient)문제를 해결2015년 Microsoft Research에서 개발었으며, ImageNet 챌린지(ILSVRC) 2015에서 우승    신경망의 깊이가 깊어질수록 더 복잡한 패턴을 학습 할 수 있지만, 오차 역전파 시 기울기가 매우 작아지거나 커져 가중치 업데이트가 제대로 이루어지지 않는 기울기 소실(Vanishing Gradient) 또는 기울기 폭발(Exploding Gradient) 문제로 인해 학습이 어려워 짐→ 네트워크를 깊게 쌓을수록 성능이 오히려 저하되는 문제 발생 잔차 학습(Residual L..

⊢ DeepLearning 2025.03.21
728x90