Encoder 2

오토인코더(Autoencoder)

오토인코더 (Autoencoder) 입력 데이터를 압축(인코딩)하고, 다시 복원(디코딩)하는 비지도 학습 모델 입력값을 출력값과 가깝게 만드는 방향으로 학습하며, 입력 데이터를 효율적으로 표현하는 잠재 벡터(latent vector)를 학습함  주요 활용 분야차원 축소 (Dimensionality Reduction)노이즈 제거 (Denoising)이상 탐지 (Anomaly Detection)생성 모델 기반 (VAE, GAN 등) 동작 원리 인코더 (Encoder) 입력 데이터를 저차원 잠재 공간으로 압축입력 x 를 잠재 변수 z로 변환𝑥 = f(𝑥) = σ(Wₑ 𝑥 + bₑ) → 중요한 특징을 추출하고, 입력 데이터를 압축  디코더 (Decoder) 잠재 변수 z를 원래의 입력과 유사한 데이터 x̂..

⊢ DeepLearning 2025.03.21

자연어 처리(Natural Language Processing, NLP) 모델

자연어 처리(NLP) 모델 워드 임베딩과 시퀀스 모델링 워드 임베딩(Word Embedding) 기법 단어를 고정된 크기의 벡터로 변환하는 기법단어 간의 의미적 유사성을 반영하여 벡터 공간에서 가까운 위치에 배치벡터 간의 연산을 통해 이미적 관계(예: '왕 - 남자 + 여자 ≈ 여왕')을 파악할 수 있음 → 단어의 의미적 관계를 벡터로 변환하는 핵심 기술 대표적 워드 임베딩 기법Word2Vec (CBOW, Skip-gram)GloVeFastTextELMo (문맥을 반영한 임베딩)  Word2Vec 신경망을 이용해 단어를 벡터로 변환하는 모델로 두 가지 학습 방식 제공 CBOW(Continuous Bag of Words)주변 단어 (Context)로 중심 단어(Target)을 예측하는 방식학습이 빠르고 데..

⊢ DeepLearning 2025.03.20
728x90